CMSI 632 Cognitive Systems

3 semester hours

Topics at the intersection of cognitive psychology, experimental design, and machine learning, through an examination of the tools that automate how intelligent agents (both human and artificial) react to, learn from, and otherwise reason about their environments. Causal formalizations for higher cognitive processes surrounding the distinction between associational, causal, and counterfactual quantities, as well as advanced topics in causal inference including do-calculus and transportability. Automation of aspects of human and animalistic reasoning by employing modern tools from reinforcement and causal learning, including: Structural Causal Models, Counterfactual Randomization, Multi-armed Bandit Agents, Markov Decision Processes, approaches to Q-Learning, and Generative Adversarial models.

Prerequisite: CMSI 630  or equivalent.

Print-Friendly Page (opens a new window)